OREGON STATE UNIVERSITY

Equipment List

Photo of equipment in the labMagnetics Laboratory

Kelley Engineering Center houses the Applied Magnetics Laboratory in two 600 ft2 rooms. The research is dedicated to the discovery, development and characterization of magnetic materials and devices.

Magnetic material characterization

    Electromagnets
    • Cryogen free vector magnet, 5 Tesla/3 Tesla, with integrated VTI (Cryogenic Limited)
      • FMR, 40 GHz
      • Cooled VSM, as low as 5 Kelvin
      • Heated VSM, up to 700 Kelvin
      • Magnetostriction
      • MOKE
    • BH looper, MESA system with 3” magnetostriction pickup assembly (Shb Instruments Inc.)
    • Vibrating sample magnetometer (VSM), 0.7 Tesla (custom)
    • Ferromagnetic resonance spectroscopy (FMR)
    • Magneto-optic Kerr effect (MOKE) microscope, longitudinal and transversal, 40 mT (custom)
    • Water cooled resistive magnet, 1.2 Tesla
    • Projected field electromagnet, 0.3 Tesla (GMW Associates 5201)
    • Helmholtz coils
    Hall probes and gaussmeters
    • Gaussmeter / Teslameter (Sypris T&M - FW Bell 7010)
    • Gaussmeter (Lakeshore 450)
    • DSP gaussmeter (Lakeshore 475)
    • 3-channel gaussmeter (Lakeshore 460)
    Other
    • NIST magnetic reference standards
    • Magnetic shield, DC magnetic fields reduced to below 1 picotesla (Amuneal Corp.)

Device characterization tools

    Interferometer
    • Heterodyne laser interferometer, up to 4 GHz, 1 micron spot size, amplitude resolution on order of picometers
    • Fizeau interferometer (custom)
    Power supplies
    • Triple output power supply, 6 V and 2.5 A (HP Inc. 6236B)
    • Dual power supply, 20 V and 1 A (Tektronix, Inc. PS503A)
    • Power module, 33.5 V and 1.4 A (Tektronix, Inc. TM504)
    • Power supply, 20 V and 20 A (KEPCO BOP 20-20ML)
    • Power supply, 20 V and 50 A (KEPCO BOP 20-50MG)
    • Power supply, 100 V and 10 A (KEPCO BOP 100-10MG)
    • Power supply, 40 V and 50 A (HP Inc. 6269B)
    • Power supply, 600 V and 5 A, 3 kW power output (Sorensen DLM 600-5E)
    • Isolated voltage source (Stanford Research Systems SIM928)
    Signal generators
    • Function generator, 0.002 Hz - 2 MHz (Tektronix, Inc. FG 501A)
    • Function generator, 0.5 Hz - 5 MHz (BK Precision 4011A)
    • Pulse generator, 50 MHz (HP Inc. 8112A)
    • RF signal generator, DC - 4 GHz (Stanford Research Systems SG384/2)
    • Analog signal generator, 100 kHz - 3 GHz (Agilent Tech. Inc. N5181A)
    • Analog signal generator, 100 kHz - 20 GHz (Agilent Tech. Inc. N5183A)
    Arbitrary waveform generators
    • Arbitrary waveform generator, 8-bit, 65 GS/s (Keysight Tech. Inc. M8195A)
    • Arbitrary waveform generator, 10-bit, 1.25 GS/s (Agilent Tech. Inc. N8242A)
    • Arbitrary waveform generator, 10-bit, 10 GS/s (Tektronix, Inc. AWG7102)
    • Arbitrary function generator, 14-bit, 250 MS/s (Tektronix, Inc. AFG3022B)
    Amplifiers
    • Programmable voltage preamplifier, low noise - 4 nV/√Hz (Stanford Research Systems SIM910)
    • Preamplifier, low noise (EG&G PARC Model 113)
    • Power amplifier, 20 Hz - 20 kHz, 700 Watts (Soundstream Reference 700s)
    • Power amplifier, DC - 300 kHz (AE Techron 7224)
    • Power amplifier, DC - 1 MHz (Krohn-Hite Model 7500)
    • RF amplifier, 2 - 8 GHz, 3 Watts (Mini Circuit ZVE-3W-83+)
    • RF amplifier, 4.0 - 10.6 GHz, 1 Watt (AR 1S4G11)
    • RF amplifier, 1 - 1000 MHz, 4 Watts (OPHIR RF 5094F)
    • Audio amplifier, 20 Hz - 20 kHz, 4,000 Watts (EUROPOWER EP4000)
    • Microwave amplifier, 1 - 2 GHz, 1 Watt (HP Inc. 489A)
    Probe stations
    • Benchtop RF wafer probe station with 1 - 40 GHz capability
    • 4 arm probe station (LakeShore Cryotronics, Inc. EMPX-HF)
    Network analyzers
    • Network analyzer, 9 kHz - 8.5 GHz (Agilent Tech. Inc. E5071C-280)
    • PNA network analyzer, 10 MHz - 43.5 GHz (Agilent Tech. Inc. N5224A-200)
    • Series Network Analyzer, 9 kHz - 6.5 GHz (Keysight Tech. Inc. E5071C)
    Lock-in amplifiers
    • Dual phase lock-in amplifier, 1 mHz - 102 kHz (Stanford Research Systems SR830)
    • Dual phase lock-in amplifier, 5 Hz - 200 kHz (EG&G 5208)
    • Lock-in amplifier (Zurich Instruments HF2LI)
    Oscilloscopes
    • 4 channel, 1 GHz oscilloscope (Agilent Tech. Inc. MSO6104A)
    • 4 channel, 1 GHz oscilloscope (Tektronix, Inc. DPO4104)
    • 4 channel, 2 GHz oscilloscope (LeCroy WaveRunner 204Xi)
    • DC - 70 GHz sampling oscilloscope (Tektronix, Inc. DSA8200)
      • 80E03 20 GHz 2-channel sampling module
      • 80E08 30 GHz 2-channel time-domain reflectometry (TDR) sampling module
      • Z-line software for impedance deconvolution
    Other Equipment
    • RF impedance analyzer, 1 MHz - 3 GHz (Agilent Tech. Inc. E4991A)
    • Semiconductor device analyzer, 0.5 μV, 10 fA (Agilent Tech. Inc. B1500A)
    • LCR meter, 100 Hz - 2 kHz (GW Instek LCR 816)
    • Real time spectrum analyzer, DC - 8 GHz frequency range (Tektronix, Inc. RSA3308B)
    • Sourcemeter, 40 V and 5 A, 50 W power output (Keithley 2440 5A)
    • Sourcemeter, 20 V and 1 A, 20 W power output (Keithley 2401 1A)
    • Multimeter (FLUKE 8840A)
    • Power logicon (Uthe Technologies Inc. 10G)
    • Wire bonder (Mech-El Industries Inc. 827)
    • Manual wire bonder (WestBond, Inc. 747677E)
    • Universal motion controller\driver (Newport ESP300)
    • Axiotron inspection microscope
    • Nikon eclipse LV100ND microscope
    • Thermal Inkjet Picofluidic System (HP Inc.)
    • Vacuum Desiccator Cabinets (Cleatech)
    • Sonicator (Branson 1200)
    • Microbalance (U.S. Solid USS-DBS)
    • Tunable analog filter (Stanford Research Systems SIM965)
    Software tools
    • Cadence and Mentor Graphics tools for physical layout and lithographic mask design
    • Ansoft finite element analysis magnetic simulation software
    • NIST μmag Micromagnetic Modelling software
    • SPICE electrical modeling software

Solid State Materials and Devices Research Laboratory

This is a 3000 ft2 class 1000 clean room to support the fabrication and characterization of electronic, magnetic, optical and microwave materials and devices. Equipment for processing include systems for atomic layer deposition, RF sputtering, ion beam sputtering, thermal and electron beam evaporation, activated reactive evaporation, plasma-enhanced chemical vapor deposition, reactive ion etching, rapid thermal processing, wet chemical processing, and photolithography. Also available, for a user fee, are optical mask generating and direct write lithography capabilities. Characterization equipment includes optical and mechanical thin film measurement systems, Auger electron spectroscopy, scanning electron spectroscopy, and measurement systems for the electrical and microwave analysis.

Microwave Laboratory

This facility provides extensive equipment for time-and frequency-domain measurement and characterization of active and passive devices and structures, including electronic packaging and interconnects. The equipment list includes sampling oscilloscopes with multiple 20 GHz sampling heads, spectrum analyzers, noise figure meter, probe station, and electromagnetic interference (EMI) measurement systems. In addition to the measurement equipment, microwave design software suite and electromagnetic simulators are available.

Machine Shop

The College of Engineering at Oregon State University maintains a fully equipped machine shop with a full time machinist in support of research activities. This facility is available on a fee basis. In addition, a 3D printer (Dimension BST 1200) for creating ABS plastic components is accessible for research applications.

Oregon Nanoscience and Microtechnologies Institute (ONAMI)

ONAMI Facilities

As a member of ONAMI, the research team also has access to the facilities of all participating institutions namely, OSU, Portland State University (PSU), University of Oregon (UO) and Pacific Northwest National Laboratory (PNNL). These facilities lie within at most a 4-hour drive from Corvallis. Relevant equipment available at these institutions include: solid state lasers, atomic force microscope (AFM), magnetic force microscope (MFM), electron microscope and a SQUID magnetometer.