Weed control in field production
Dr. James Altland

Weeds

• Plants that are successful colonizing disturbed, but potentially productive, sites and maintaining their abundance with repeated disturbance.
 Liebman et al.

Redroot pigweed

• Seed survive for more than 30 years
 – Soil surface or buried
• Seed can be wind dispersed
 – Small size
• Plants produce up to 100,000 seed
 – 13,860 with no fertilizer
 – Over 34,600 when fertilized

Field bindweed

• Convolvulus arvensis
• Seeds persist in soil for 60 years
• Roots grow to a depth of 30 feet.

Nursery weed management

• Field production
 – Seeds in soil
 – Each crop planted back is same soil
 – Weed control should be preventative
 – Several postemergence options
• Container production
 – Bark is weed-free
 – Each new crop planted in fresh bark
 – Weed control must be preventative
 – No postemergence herbicides.

Field weed control

• Start clean stay clean
Field weed control

1. Field preparation
2. Prevent weed establishment
 - Most important step
 - Sanitation
 - Cultural practices
 - Preemergence herbicides
3. Control (kill) escape weeds

Field preparation

1. Spray with broad-spectrum post herbicide
 - Wait 2 weeks
2. Till weeds under
 - Wait 3 weeks
 - Apply soil amendments?
3. Till field again, final prep
4. Plant nursery crops

Perennial weeds

- Tillage can be used to eradicate perennial weeds
- Probably will take at least 2 years
 - Tilling every 3 weeks
Field preparation

- Goal is to reduce weed populations
 - Complete eradication is impossible
- Excessive tillage is damaging to soil structure
- Limit the number of tillage passes (plow, disk, roto-till, etc.) to a minimum.

Weed prevention

- Sanitation
 - Clean tillage equipment
 - Control non-crop area weeds
 - Physical barriers
- Cultural practices
 - Tillage
 - Fertilization
 - Irrigation
- Preemergence herbicides

Sanitation

- Clean tillage equipment
 - Prevent spread of perennial weeds

Sanitation

- Control weeds in non-crop areas

Sanitation

- Physical barriers
 - Prevent wind-blown seed
 - Thistles, groundsel, fireweeds
- Seed dispersed during growing season
 - Use fast growing deciduous plans (poplar)
Cultural practices

- Fertilization
 - Band apply fertilizers
 - Do not broadcast apply Nitrogen
- Weeds grow poorly in absence of nitrogen

Cultural practices

- Irrigation
 - Switch to drip irrigation if possible
- Drip irrigation
 - Faster growing crops
 - More uniform crops
 - Less labor
 - Less water
 - Less money
 - FEWER WEEDS!

Cultural practices – Tilling

- Tilling
 - Low/no chemical input
 - Prevents soil from crusting
 - Looks good
 - No weed resistance
- Repeated tilling
 - Damages soil structure
 - Degrades soil aggregates
 - Accelerates organic matter degradation
 - Leaves soil prone to erosion
Tillage
• If perennial weeds are present
 – Flag area
 – Do NOT till
 – Eradicate with post herbicides
 – Wait 30 days for regrowth
 – Spray again
 – Excavate if necessary

Clean cultivation
• 100% vegetation control
• Herbicides within rows
• Till between rows

Clean cultivation
• Disadvantages
 – Reduces soil organic matter
 – Destroys soil structure
 – Degrades soil aggregates
 – Soil compaction
 – Allows for erosion

Living mulch
• Cover crop growing between rows of nursery stock
Living mulches

- Disadvantages
 - They can compete with nursery crops
 - Cover crops can attract unwanted pests
 - Seeds can become weed problem
 - They require maintenance
 - Many don’t look very good.

Living mulch

- Advantages
 - Reduced soil erosion and runoff
 - Increases soil organic matter
 - Increase soil aggregates
 - Reduces soil compaction
 - Suppresses weeds
 - Improves percolation
 - Reduces temperature fluctuations in soil

Living mulches

- Characteristics of a good living mulch
 - Small or low growing
 - Requires minimal maintenance (mowing)
 - Minimal competitor for nutrients and water
 - Forms dense cover for weed suppression
 - Not attractive to pests or wildlife
 - Clover attracts deer
 - Turf attracts Japanese beetles in some areas

Preemergence herbicides

- Herbicide selection
- Application timing
- Maintain the chemical barrier

Plant uptake

- Most seed germinate in the top 1 inch of soil.
- Herbicide placement should occur where seeds will germinate and begin growing.
- Application of herbicide followed by incorporation with water is necessary for proper placement.
Preemergence herbicides

- **Will not** kill weeds present at time of application
 - Exception is spray-applied Goal and SureGuard
- Even small weeds have roots large enough to escape effect of pre herbicides.

Preemergence herbicides

- **Do not** prevent seed from germinating
- **Do not** kill dormant seeds

Herbicide timing

- **First application**
 - February-March
 - Irrigate newly plant crops to settle soil
 - Apply preemergence herbicide to soil
 - Incorporate the herbicide with ½ inch of irrigation

Herbicide timing

- **Second application**
 - Early summer (May)
 - Reinforce herbicides applied earlier
 - Control emerging summer annuals
 - Be careful of herbicides on tender foliage

Herbicide timing

- **Third application**
 - Late summer (September)
 - Winter annual weed control
 - Can provide weed control through next spring
Maintain the chemical barrier

- Incorporate the herbicide
- Reduce unnecessary traffic
- Reduce excessive irrigation

Incorporate the herbicide

- Most abused aspect of weed control
- Incorporate immediately after application
 - Herbicides degrade on soil surface
- Incorporate with irrigation if possible
- Do NOT incorporate with drip irrigation!!!

Field weed control

- Controlling escape weeds

Controlling escape weeds

- Herbicides
 - Glyphosate and paraquat most commonly used
 - Spot spray only
 - Broadcast applications are dangerous around valuable nursery crops.

Controlling escape weeds

- Cultivation
 - Used extensively for weed control between tree rows.
 - Negative consequences on soil structure and health.
Controlling escape weeds

• Hoeing
 – Safe
 – Labor intensive
 – Inefficient
 – Very expensive!

Summary

• Field preparation
• Weed prevention
• Weed eradication

Website

• http://oregonstate.edu/dept/nursery-weeds/