Effect of slow release fertilizers on potato production

Donald A Horneck
Oregon State University - Hermiston
Pandora’s Box

- Moral – increase availability and therefore decrease rate
- Been around for a long time
- Lots of different types
 - Nitrification/urease inhibitors
 - Slow release
 - Controlled release
Why worry?

• These materials can help prevent
 – Volatilization
 – Leaching (GWMA)
 – Denitrification

• Minimize N LOSS!

• No more ammonium nitrate
Fate of N Fertilizers

Volatilization

\[\text{NH}_3 \leftrightarrow \text{NH}_4^+ \]

Denitrification

\[\text{NH}_4^+ \rightarrow \text{NO}_3^- \]

Leaching

\[\text{UAN} \rightarrow \text{NH}_4\text{NO}_3 \]

\[\text{Urea} \]

\[(\text{NH}_4)_2\text{SO}_4 \]
Ammonia loss in grass seed
Field 1, fall 2010

Applied 168 kg N/ha

- Urea
- UAN-sol 32
- CAN 27 (Yara)
- Agrotain

Days from application

Ammonia loss, %
Slow Release

• Requires microbial breakdown
 – Manure
 – Compost
 – Plant residues
 – Urea-Formaldehyde

• Release
 – Short to years
What is the goal?

N-Uptake, lb/a

TOTAL

TUBERS

31-Mar 20-May 9-Jul 28-Aug 17-Oct

OSU-HAREC
Advantages for potato grower

• Put all N on at planting and “forget about it”
 – Simpler

• Disadvantages
 – How do you interpret monitoring?
 • Especially soil
Have tried/worked with

- Agrotain
 - Urease inhibitor
- ESN
 - Plastic coated
- N-Fusion
 - Urea formaldehyde
- NSN
 - ?
- Duration
 - Plastic coated
- Super U
 - Urease inhibitor plus nitrification inhibitor
Idaho, 2006

Application rate (% of U of I recommendation) and timing

Average of two locations, 2006. Total N rate is 200 lbs/acre. Russett Burbank.
Split urea application is 50% of N at emergence & 50% in three applications in season
Source: B Hopkins, Univ of Idaho

OSU-HAREC
<table>
<thead>
<tr>
<th>Class</th>
<th>NSN</th>
<th>GP</th>
<th>ESN</th>
<th>GSP</th>
</tr>
</thead>
<tbody>
<tr>
<td><4 oz</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>4-12 oz</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>>12 oz</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>No. 1</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>No. 2</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Mrktble</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>
Russet Norkotah Potatoes
Hermiston, OR, 2007

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total</th>
<th>Marketable</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% ESN at planting</td>
<td>914abc</td>
<td>844abc</td>
</tr>
<tr>
<td>80% ESN at planting</td>
<td>860c</td>
<td>784c</td>
</tr>
<tr>
<td>100% ESN at emergence</td>
<td>874c</td>
<td>804bc</td>
</tr>
<tr>
<td>100% N standard</td>
<td>947ab</td>
<td>874ab</td>
</tr>
<tr>
<td>80% N standard</td>
<td>916abc</td>
<td>834abc</td>
</tr>
</tbody>
</table>
2011 Russet Burbank

Slowing release

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield, t/a</th>
<th>GSP</th>
<th>AS + ESN</th>
<th>AS+D120</th>
<th>AS+D180</th>
</tr>
</thead>
<tbody>
<tr>
<td>US#1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend:
- GSP
- AS + ESN
- AS+D120
- AS+D180

Yield categories:
- Less 4
- Culls
- 4-8
- 8-12
- 12
- US#1
- Total
2011 internals Russet Burbank

Internals

- GSP
- AS + ESN
- AS+D120
- AS+D180

Percent affected

Internals

- Int.I Brown Spot
- Hollow Heart
- Zebra Chip
- Total Internals
2011, Russet Burbank

- GSP
- AS+150ESN+80D120+40D180
- AS+100ESN+90D120+80D180
- AS+50ESN+120D120+100D180

Less 4 Culls 4-8 8-12 12 US#1 Total
2011 HAREC

Premiers
2011 Premiers, HAREC

Yield Components

- U30+ ESN150+D150
- U60+ESN150+D120
- U60+ESN200+D70
- U50+ESN140+D140
- GSP 350

Yield, t/a

Under 3 oz. 3-6 oz. 6-10 oz. 10-14 oz. Over 14 oz. Total Yield
Conclusions

• They work but can be difficult

• Yields are equal to or less than grower standard practice

• They can be expensive