Regional Transportation Authority

Multi-Modal Trip Planner System

GOSCON 06
Government Open Source Conference
“Trip Planning State of the Practice”

- There is no need to “sell” transit agencies on developing trip planners
 - Common need

- Development is dependent on state and federal funding
 - High price results from market power of a few companies
 - Investment versus commodity buy?

- Federal assistance and research could help transit agencies develop high quality transit trip
MMTPS Project Overview

Integrate multiple modes (transit, driving, driving to transit, etc.)

- Enable travel choices
 - Historical or real-time travel times
 - Incidents or delay information
 - Travel preferences
 - Departure and/or arrival times
 - Walking distance
 - Accessibility
 - Cost
 - Parking availability
 - Environmental impacts

- Use ITS standards

MMTPS Demo
MMTPS Project Goals

• Evaluate technical and institutional feasibility
• Study transit ridership impacts
• Test ITS Standards
• Lay groundwork for deployment in other regions
Problem Definition

Strategic Business Objective

• Achieve the MMTPS project goal of demonstrating a web-based modally integrated trip planner system

Tactical Business Objective

• Accomplish the integrated trip planning functionality using an approach that is most technically feasible and meets cost and schedule constraints

Alternatives Analysis (AA) Goal

• Utilize a structured methodology to select the MMTPS integrated trip planning approach
Alternatives Analysis

- Identification of technology and/or system configuration alternatives
- Evaluation of each alternative’s capability for meeting trip planning functionality requirements
- Assessment of each alternative’s development and deployment timeline requirements
- Estimate of each alternative’s development, deployment and maintenance cost requirements
- Recommendation of alternative
Problem Definition

Constraints:

• Technical – feasibility of complying with functional requirements

• Financial – There is a cost limit of $XXX,XXX for the trip planning functionality

• Schedule – The trip planning functionality solution must have an implementation period of Y months or less
Description of Alternatives

• Alternative 1: Existing Systems Integration
• Alternative 2: Enhanced Systems Integration
• Alternative 3: Open Source (OS) Development
• Alternative 4: Customize Existing OS Efforts
• Alternative 5: Commercial Off-the-
Alternative 1: Existing Systems Integration

- Utilize RTA’s Itinerary Planning System (IPS) as the transit trip planning engine
- Access IPS via RTA’s TripsWeb site
- Excludes development of external interface for RideMatch 21, i.e. provides no means of producing or integrating driving directions
- Provides no means of integrating CNT Emissions Avoided Module, i.e. provides no means of providing air quality impact information
Alternative 2: Enhanced Systems Integration

- Procure license for an external interface to the RTA IPS
- Develop an external interface to RideMatch 21
- Allows MMTPS to access RTA IPS directly
- Provides no means of integrating CNT Emissions Avoided Module
Alternative 3: Open Source Development

- Develop trip planning functionality in an Open Source framework
- Produces integrated driving and transit itineraries
- Provides means of integrating CNT Emissions Avoided Module
Alternative 4: Customize Existing Open Source Efforts

- Build on an existing trip planning functionality that was developed or is being developed in an Open Source framework
- Produces integrated driving and transit itineraries
- Provides means of integrating CNT Emissions Avoided Module
Alternative 5: Commercial Off-the-Shelf

- Procure a “best of class” Commercial–Off-the-Shelf product to achieve trip planning functionality
- Produces integrated driving and transit itineraries
- Provides means of integrating CNT Emissions Avoided Module
Alternative 6: Combination

- Utilize RTA’s current IPS as transit trip planning engine
- Procure a Commercial-Off-the-Shelf product as driving itinerary engine
- Produces integrated driving and transit itineraries
- Provides no means of integrating CNT Emissions Avoided Module
Analytical Framework

Schedule Evaluation:

• Development timeline
 - Time required, in months, for designing, coding and testing

• Deployment timeline
 - Time required, in months, for establishing production capability
Analytical Framework

Cost Estimate:

• Development
 - Costs ($) incurred in designing, coding and testing

• Deployment
 - Costs ($) that are required to establish a production capability

• Operations and Maintenance
 - Costs ($) associated with supporting the system
Analytical Framework

Selection Methodology:

- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
 - Multi-attribute decision-making technique
 - Based on notion that the best alternative should have the shortest distance to the ideal solution and farthest from the negative-ideal solution

References: